
Database Design: Normalization

Agenda

1. Database Design

2. Normal forms & functional dependencies

3. Finding functional dependencies

4. Closures, superkeys & keys

Design Theory
 The biggest problem needed to be solved in database is data redundancy.
 Why data redundancy is the problem? Because it causes:

 Insert Anomaly

 Update Anomaly

 Delete Anomaly

 Design theory is about how to represent your data to avoid anomalies.

 Achieved by Data Normalization, a process of analyzing a relation to ensure

that it is well formed.

 Normalization involves decomposing relations with anomalies to produce

smaller well structured relations.

 If a relation is normalized (or well formed), rows can be inserted, deleted and
modified without creating anomalies.

Data Anomalies & Constraints

Constraints Prevent (some)
Anomalies in the Data

Student Course Room
Mary CSC261 101
Joe CSC261 101
Sam CSC261 101
..

If every course is in only one room,
contains redundant information!

A poorly designed database causes
anomalies:

Constraints Prevent (some)
Anomalies in the Data

Student Course Room
Mary CSC261 101
Joe CSC261 703
Sam CSC261 101
..

If we update the room number for one tuple, we
get inconsistent data = an update anomaly

A poorly designed database causes
anomalies:

Constraints Prevent (some)
Anomalies in the Data

Student Course Room
..

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

A poorly designed database causes
anomalies:

Constraints Prevent (some)
Anomalies in the Data

Similarly, we
can’t reserve a
room without
students = an
insert anomaly

A poorly designed database causes
anomalies:

Student Course Room
Mary CSC261 B01
Joe CSC261 B01
Sam CSC261 B01
..… CSC461 703

Constraints Prevent (some)
Anomalies in the Data

Student Course
Mary CSC261
Joe CSC261
Sam CSC261
.. ..

Course Room
CSC261 101
CSC257 601

Today: develop theory to understand why this design
may be better and how to find this decomposition…

Is this form better?

• Redundancy?
• Update anomaly?
• Delete anomaly?
• Insert anomaly?

Anomalies are problems caused by bad database design.

Example:

ACTIVITY(StudentID, Activity, Fee)

An insertion anomaly occurs when a row cannot be added to a

relation, because not all data are available (or one has to invent “dummy” data)

 Example: we want to store that scuba diving costs $175, but have no place to put

this information until a student takes up scuba-diving (unless we create a fake

student)

A deletion anomaly occurs when data is deleted from a relation, and other critical data
are unintentionally lost
 Example: if we delete the record with StudentID = 100, we forget that skiing costs

$200
An update anomaly occurs when one must make many changes to reflect the
modification of a single datum

 Example: if the cost of swimming changes, then all entries with swimming
Activity must be changed too

Database Anomalies
Example 2 StudentID Activity Fee

100 Skiing 200

100 Golf 65

175 Squash 50

175 Swimming 50

200 Swimming 50

200 Golf 65

ACTIVITY Relation

Anomalies are primarily caused by:

1. Data redundancy: replication of the same field in multiple tables, other than foreign

keys

2. Functional dependencies including:

 Partial dependency

 Transitive dependency

 Multi-value dependency

Cause of Anomalies

Functional Dependencies

Functional Dependencies for Dummies

• A relationship between attributes where one attribute (or
group of attributes) determines the value of another
attribute (or group of attributes) in the same table.

• Example:
SSN uniquely identify any Person

(SSN) (First Name, Last Name)

Candidate Keys/Primary Keys and Functional Dependencies

By definition:
• A candidate key of a relation functionally determines all

other non-key attributes in the row.

Implies:
• A primary key of a relation functionally determines all other

non-key attributes in the row.

EmployeeID (EmployeeName, EmpPhone)

Functional Dependency

A B means that
“whenever two tuples agree on A then they agree on B.”

Def: Let A, B be sets of attributes, we write A B or say
A functionally determines B if, for any tuples t1 and t2:

t1[A] = t2[A] implies t1[B] = t2[B] and we

call A B a functional dependency

A It is a determinant set.

B It is a dependent attribute.

{A → B} A functionally determines B.
B is a functionally dependent on A.

A Picture of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A = {A1,…,Am}
and B = {B1,…Bn} in R,

A Picture of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency A B
on R holds if for any ti, tj in R:

Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency A B
on R holds if for any ti,tj in R:

ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND …
AND ti[Am] = tj[Am]

A1 … Am B1 … Bn

If t1, t2 agree here..

ti

tj

A Picture of FDs

Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency A B
on R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND
… AND ti[Am] = tj[Am]

then ti[B1] = tj[B1] AND ti[B2]=tj[B2]
AND … AND ti[Bn] = tj[Bn]

A1 … Am B1 … Bn

ti

tj

If t1,t2 agree here.. …they also agree here!

A Picture of FDs

FDs for Relational Schema Design

High-level idea: why do we care aboutFDs?

1. Start with some relational schema (e.g., design by ER diagram)

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
• One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

Student Course Room
Mary CS145 B01
Joe CS145 B01
Sam CS145 B01

..

Note: The FD
{Course} -> {Room} holds on

this instance

A functional dependency is a form of
constraint

• Holds on some instances not others.

• Part of the schema, helps define a valid
instance.

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

Functional Dependencies as Constraints

Student Course Room
Mary CS145 B01
Joe CS145 B01
Sam CS145 B01

..

However, cannot prove that the
FD {Course} -> {Room} is part of
the schema

Note that:
• You can check if an FD is

violated by examining a single
instance;

• However, you cannot prove
that an FD is part of the
schema by examining a single
instance.
• This would require checking

every valid instance

More Examples

An FD is a constraint which holds, or does not hold on
an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

{Position} {Phone}

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

More Examples

EmpID Name Phone Position

E0045 Smith 1234 Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234 Lawyer

but not {Phone} {Position}

More Examples

ACTIVITY

A B C D E
1 2 4 3 6
3 2 5 1 8
1 4 4 5 7
1 2 4 3 6
3 2 5 1 8

Find at least three FDs which
hold on this instance:

{A } {C }

{A,B } {C }
{E } {D }

Armstrong inference rules

 Armstrong's Axioms is a set of rules.
 It provides a simple technique for reasoning about functional

dependencies.
 It was developed by William W. Armstrong in 1974.
 It is used to infer all the functional dependencies on a relational

database.

Armstrong inference rules

Axioms:
Reflexivity: if YX, then X→Y
Augmenta on: if X→Y, then WX→WY
Transi vity: if X→Y and Y→Z, then X→Z

Derived Rules:
Union: if X→Y and X→Z, the X→YZ
Decomposi on: if X→YZ, then X→Y and X→Z
Pseudo transi vity: if X→Y and WY→Z, then XW→Z

Armstrong inference rules

Axioms are both
Sound:
when applied to a set of functional dependencies they only
produce dependency tables that belong to the transitive closure
of that set

Complete:
can produce all dependency tables that belong to the transitive
closure of the set

Armstrong inference rules

Three last rules can be derived from the first three (the axioms)
Let us look at the union rule:

if X→Y and X→Z, the X→YZ
Using the first three axioms, we have:

if X→Y, then XX→XY same as X→XY (2nd)
if X→Z, then YX→YZ same as XY→YZ (2nd)
if X→XY and XY→YZ, then X→YZ (3rd)

Example:
Consider relation E = (P, Q, R, S, T, U) having set of Functional Dependencies (FD).
P → Q P → R
QR → S Q → T
QR → U PR → U

Calculate some members of axioms are as follows:
1. P → T
2. PR → S
3. QR → SU
4. PR → SU

Axioms:
Reflexivity: if YX, then X→Y
Augmenta on: if X→Y, then WX→WY
Transi vity: if X→Y and Y→Z, then X→Z

Derived Rules:
Union: if X→Y and X→Z, the X→YZ
Decomposi on: if X→YZ, then X→Y and X→Z
Pseudo transi vity: if X→Y and WY→Z, then XW→Z

Solution:

1. P → T
In the FD set, P → Q and Q → T
So, Using Transi ve Rule: If {A → B} and {B → C}, then {A → C}
∴ If P → Q and Q → T, then P → T.

2. PR → S
In the above FD set, P → Q
As, QR → S
So, Using Pseudo Transi vity Rule: If{A → B} and {BC → D}, then {AC → D}
∴ If P → Q and QR → S, then PR → S.

3. QR → SU
In above FD set, QR → S and QR → U
So, Using Union Rule: If{A → B} and {A → C}, then {A → BC}
∴ If QR → S and QR → U, then QR → SU.

4. PR → SU
So, Using Pseudo Transi vity Rule: If{A → B} and {BC → D}, then {AC → D}
∴ If PR → S and PR → U, then PR → SU.

Axioms:
Reflexivity: if YX, then X→Y
Augmenta on: if X→Y, then WX→WY
Transi vity: if X→Y and Y→Z, then X→Z

Derived Rules:
Union: if X→Y and X→Z, the X→YZ
Decomposi on: if X→YZ, then X→Y and X→Z
Pseudo transi vity: if X→Y and WY→Z, then XW→Z

Trivial Functional Dependency

Trivial If A holds B {A → B}, where B is a subset of A, then it is called a Trivial
Functional Dependency. Trivial always holds Functional Dependency.

Non-Trivial If A holds B {A → B}, where B is not a subset A, then it is called as a Non-
Trivial Functional Dependency.

Normalization

https://www.youtube.com/watch?v=UrYLYV7WSHM
https://www.youtube.com/watch?v=l5DCnCzDb8g

Normalization

 Normalization is the process of removing redundant data from your

tables to improve storage efficiency, data integrity, and scalability.

 Normalization generally involves splitting existing tables into multiple

ones, which must be re-joined or linked each time a query is issued.

 Why normalization?

 The relation derived from the user view or data store will most

likely be unnormalized.

 The problem usually happens when an existing system uses

unstructured file, e.g. in MS Excel.

Unnormalized Form (table)
Example

Normalization Example

• (Student ID) (Student Name, DormName, DormCost)

• However, if
– (DormName) (DormCost)

Then, DormCost should be put into its own relation, resulting
in:
(Student ID) (Student Name, DormName)
(DormName) (DormCost)

Normalization Example

• (AttorneyID, ClientID) (ClientName, MeetingDate,
Duration)

• However, if
– ClientID ClientName

• Then: ClientName should be in its own relation:

• (AttorneyID, ClientID) (MeetingDate, Duration)
• (ClientID) (ClientName)

Steps of Normalization

 First Normal Form (1NF)

 Second Normal Form (2NF)

 Third Normal Form (3NF)
 Boyce-Codd Normal Form (BCNF)

 Fourth Normal Form (4NF)

 Fifth Normal Form (5NF)
 Domain Key Normal Form (DKNF)

In practice, 1NF, 2NF, 3NF, and BCNF are enough for
database.

Normal Forms

• 1st Normal Form (1NF) = All tables are flat

• 2nd Normal Form (2NF)

• 3rd Normal Form (3NF)

• Boyce-Codd Normal Form (BCNF)

• 4th and 5th Normal Forms = see text books

DB designs based on
functional dependencies,
intended to prevent data
anomalies

Normalization Steps

Table with
multivalued
attributes

Remove
multivalued

attributes

First Normal
Form (1NF)

First Normal
Form (1NF)

Remove
Partial

Dependencies

Second
Normal Form

(2NF)

Second
Normal

Form (2NF)

Remove
Transitive

Dependencies

Third Normal
Form (3NF)

First Normal Form (1NF)

The official qualifications for 1NF are:
1. Each attribute name must be unique.
2. Each attribute value must be single.
3. Each row must be unique.
4. There is no repeating groups.

Additional:
Choose a primary key.

Reminder:
A primary key is unique, not null, unchanged. A primary

key can be either an attribute or combined attributes.

1st Normal Form(1NF)

Student Courses
Mary {CS145, CS229}
Joe {CS145, CS106}
… …

Violates 1NF.

1NF Constraint: Types must be atomic!

Student Courses
Mary CS145
Mary CS229
Joe CS145
Joe CS106

In 1st NF

First Normal Form (1NF) (Cont.)

Example of a table not in 1NF :

It violates the 1NF because:
 Attribute values are not single.
 Repeating groups exists.

Group Topic Student Score

Group A Intro MongoDB Sok San 18 marks

Sao Ry 17 marks

Group B Intro MySQL Chan Tina 19 marks

Tith Sophea 16 marks

First Normal Form (1NF) (Cont.)

 After eliminating:

 Now it is in 1NF.
However, it might still violate 2NF and so on.

Group Topic Family Name Given Name Score

A Intro MongoDB Sok San 18

A Intro MongoDB Sao Ry 17

B Intro MySQL Chan Tina 19

B Intro MySQL Tith Sophea 16

Functional Dependencies

We say an attribute, B, has a functional dependency on another
attribute, A, if for any two records, which have the same value
for A, then the values for B in these two records must be the
same. We illustrate this as:

A B (read as: A determines B or B depends on A)

Employee_name Email_address

Employee_name Project Email_address

Joe San POS Mart Sys soksan@yahoo.com

Sao Ry Univ Mgt Sys sao@yahoo.com

Joe San Web Redesign soksan@yahoo.com

Chan Sokna POS Mart Sys chan@gmail.com

Sao Ry DB Design sao@yahoo.com

Functional Dependencies (cont.)

EmpNum EmpEmail EmpFname EmpLname
123 jdoe@abc.com John Doe
456 psmith@abc.com Peter Smith
555 alee1@abc.com Alan Lee
633 pdoe@abc.com Peter Doe
787 alee2@abc.com Alan Lee

If EmpNum is the PK then the FDs:

EmpNum EmpEmail, EmpFname, EmpLname

must exist.

Functional Dependencies (cont.)

EmpNum EmpEmail, EmpFname, EmpLname

EmpNum
EmpEmail

EmpFname

EmpLname

EmpNum EmpEmail EmpFname EmpLname

3 different ways
you might see
FDs depicted

Determinant

Functional Dependency

EmpNum EmpEmail

Attribute on the left hand side is known as the
determinant

• EmpNum is a determinant of EmpEmail

Second Normal Form (2NF)

The official qualifications for 2NF are:

1. A table is already in 1NF.
2. All non-key attributes are fully dependent on the

primary key.

All partial dependencies are removed to place in another
table.

• Partial dependency is a functional dependency whose determinant is
part of the primary key (but not all of it)

• Example:

ACTIVITY(StudentID, Activity, Fee)

Partial Dependencies

StudentID

Fee

Activity

StudentID Activity Fee
100 Skiing 200
100 Golf 65
175 Squash 50
175 Swimming 50
200 Swimming 50

200 Golf 65

CourseID SemesterID Num Student Course Name

IT101 201301 25 Database

IT101 201302 25 Database

IT102 201301 30 Web Prog

IT102 201302 35 Web Prog

IT103 201401 20 Networking

Example of a table not in 2NF:

The Course Name depends on only CourseID, a part of the primary key not the
whole primary {CourseID, SemesterID}. It’s called partial dependency.

Solution:
Remove CourseID and Course Name together to create a new table.

Primary Key

CourseID Course Name

IT101 Database

IT101 Database

IT102 Web Prog

IT102 Web Prog

IT103 Networking

Done?
Oh no, it is still not in
1NF yet.
Remove the repeating
groups too.
Finally, connect the
relationship.

CourseID Course Name

IT101 Database

IT102 Web Prog

IT103 Networking

C ourseID SemesterID Num Student

IT101 201301 25

IT101 201302 25

IT102 201301 30

IT102 201302 35

IT103 201401 20

Third Normal Form (3NF)

The official qualifications for 3NF are:
1. A table is already in 2NF.
2. Nonprimary key attributes do not depend on other

nonprimary key attributes
(i.e. no transitive dependencies)
All transitive dependencies are removed to place
in another table.

Transitive dependency is a functional dependency whose determinant is
not the primary key, part of the primary key, or a candidate key.

Transitive functionality is a functional dependency in which a non-key
attribute is determined by another non-key attribute.

Example:
ACTIVITY(StudentID, Activity, Fee)

Transitive Dependencies

StudentID Activity Fee
100 Skiing 200
100 Golf 65
175 Squash 50
175 Swimming 50
200 Swimming 50

200 Golf 65

StudyID CourseName TeacherName TeacherTel

1 Database Sok Piseth 012 123 456

2 Database Sao Kanha 0977 322 111

3 Web Prog Chan Veasna 012 412 333

4 Web Prog Chan Veasna 012 412 333

5 Networking Pou Sambath 077 545 221

Example of a Table not in 3NF:

Primary Key
The TeacherTel is a nonkey attribute, and the
TeacherName is also a nonkey attribute. But
TeacherTel depends on TeacherName.
It is called transitive dependency.

Solution:
Remove Teacher Name and TeacherTel together to create a
new table.

Teacher Name Teacher Tel

Sok Piseth 012 123 456

Sao Kanha 0977 322 111

Chan Veasna 012 412 333

Chan Veasna 012 412 333

Pou Sambath 077 545 221

Done?
Oh no, it is still not in 1NF yet.

Remove Repeating row.

Teacher Name Teacher Tel

Sok Piseth 012 123 456

Sao Kanha 0977 322 111

Chan Veasna 012 412 333

Pou Sambath 077 545 221

ID Teacher Name Teacher Tel

T1 Sok Piseth 012 123 456

T2 Sao Kanha 0977 322 111

T3 Chan Veasna 012 412 333

T4 Pou Sambath 077 545 221

StudyID C ourse N ame T.ID

1 Database T1

2 Database T2

3 Web Prog T3

4 Web Prog T3

5 Networking T4

Note about primary key:
-In theory, you can choose
TeacherName to be a primary key.
-But in practice, you should add
TeacherID as the primary key.

Boyce Codd Normal Form (BCNF) – 3.5NF

The official qualifications for BCNF are:
1. A table is already in 3NF.
2. All determinants must be superkeys.
All determinants that are not superkeys are removed to

place in another table.

K is a superkey for relation R if K functionally determines
all of R.

K is a (candidate)key for R if K is a superkey, but no
proper subset of K is a superkey.

Boyce Codd Normal Form (BCNF) (Cont.)

 Example of a table not in BCNF:

 Key: {Student, Course}

 Functional Dependency:
 {Student, Course}Teacher
 Teacher Course

 Problem: Teacher is not a superkey but determines Course.

Student Course Teacher

Sok DB John

Sao DB William

Chan E-Commerce Todd

Sok E-Commerce Todd

Chan DB William

Student Course

Sok DB

Sao DB

Chan E-Commerce

Sok E-Commerce

Chan DB

Course Teacher

DB John

DB W illiam

E-Commerce Todd

Course

DB

E-Commerce

Solution: Decouple a table
contains Teacher and Course
from original table (Student,
Course). Finally, connect the
new and old table to third
table contains Course.

Forth Normal Form (4NF)

The official qualifications for 4NF are:
1. A table is already in BCNF.

2. A table contains no multi-valued dependencies.

 Multi-valued dependency: MVDs occur when two or more independent multi
valued facts about the same attribute occur within the same table.

A ->-> B (B multi-valued depends on A)

Example: MVD

Customer(name, addr, phones, email_drinksLiked)
A drinker’s phones are independent of the drinks they like.

name->->phones and name ->->drinksLiked.

Thus, each of a drinker’s phones appears with each of the drinks they like in
all combinations.

Tuples Implied by name->->phones

If we have tuples:

name addr phones drinksLiked
sue a p1 d1
sue a p2 d2
sue a p2 d1
sue a p1 d2

Then these tuples must also be in the relation.

Picture of MVD X ->->Y

X Y others

equal

exchange

Forth Normal Form (4NF) (Cont.)

 Example of a table not in 4NF:

 Key: {Student, Major, Hobby}
 MVD: Student -->> Major, Hobby

Student Major Hobby

Sok IT Football

Sok IT Volleyball

Sao IT Football

Sao Med Football

Chan IT NULL

Puth NULL Football

Tith NULL NULL

Student Major

Sok IT

Sao IT

Sao Med

Chan IT

Puth NULL

Tith NULL

Student

Sok

Sao

Chan

Puth

Tith
Student Hobby

Sok Football

Sok Volleyball

Sao Football

Chan NULL

Puth Football

Tith NULL

Solution: Decouple to each
table contains MVD. Finally,
connect each to a third table
contains Student.

Fifth Normal Form (5NF)

The official qualifications for 5NF are:
1. A table is already in 4NF.

2. The attributes of multi-valued dependencies are related.

Fifth Normal Form (5NF) (Cont.)

 Example of a table not in 5NF:

 Key: {Seller, Company, Product}
 MVD: Seller -->> Company, Product

 Product is related to Company.

Seller Company Product

Sok MIAF Trading Zenya

Sao Coca-Cola Corp Coke

Sao Coca-Cola Corp Fanta

Sao Coca-Cola Corp Sprite

Chan Angkor Brewery Angkor Beer

Chan Cambodia Brewery Cambodia Beer

Seller C ompany

MIAF Trading

Sao Coca-Cola Corp

Chan Angkor Brewery

Chan Cambodia Brewery

Seller Product

Sok Zenya

Sao Coke

Sao Fanta

Sao Sprite

Chan Angkor Beer

Chan Cambodia
Beer

C ompany Product

MIAF Trading Zenya

Coca-Cola Corp Coke

Coca-Cola Corp Fanta

Coca-Cola Corp Sprite

Angkor Brewery Angkor Beer

Cambodia
Brewery

Cambodia
Beer

Seller

Sok

Sao

Chan

C ompany

Coca-Cola Corp

Angkor Brewery

Cambodia Brewery

Product

Zenya

Coke

Fanta

Sprite

Angkor Beer

1

1

1

1

1 MIAF Trading

1

M Sok

M

M

M

M

M

Normalization Practice

Please see the normalization example slides

Acknowledgement

Some of these slides are taken from cs145 course offered by
Stanford University.

